

S O M A R E ENGINEERING LABORATORY SERIES S E L-8 6- 0 0

MEASURING
SOFTWARE DESIGN

NOVEMBER 1986

National Aeronautics and
Space Administration

Goddatd Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has
three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment: (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Computer Sciences Corporation document
CSC/TM-86/6053 /
Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 20771

i

0273

AUTHORS

The principal author of this document is

Dave Card

Additional materials were contributed by

Bill Agresti
Vic Basili
Vic Church
Bill Decker
Leon Jordan
Frank McGarry
Jerry Page
Ed Seidewitz
Rick Selby
Mike Stark

Original sources are fully identified in the references.

ii

0273

ABSTRACT

An extensive series of studies of software design measures
conducted by the Software Engineering Laboratory is
described. Included are the objectives and results of the
studies, the method used to perform the studies, and the
problems encountered. The document should be useful to
researchers planning similar studies as well as to managers
and designers concerned with applying quantitative design
measures.

I

iii

0273

TABLE O F CONTENTS

I Section 1 Introduction 1-1
1.1 The Software Engineering Laboratory 1-1
1.2 Study Objectives 1-3
Section 2 . Measurement Approach 2-1

I 2.2 Data Summary 2-3 2.1 Data Collection 2-1
Section 3 . Measurement Results 3-1
3.1 Design Quality Characteristics 3-1 I

I 3.2 Software Classification 3-5
3.2.1 Project-Level Studies 3-5
3.2.2 Module-Level Studies 3-6

3.3 Software Reuse 3-10
3.4 Module Size . 3-12
3.5 Strength/Cohesion 3-16
3.6 Control Coupling 3-21
3.7 Data Coupling 3-24
3.8 System Structure 3-28
Section 4 . Design Method Studies 4-1
4.1 Object-Oriented Design 4-1
4.2 FOKTRAN/Ada-Oriented Design Comparison 4-3

4.2.1 System Structure 4-4
4.2.2 External Data Flow 4-8
4.2.3 Internal Data Flow. 4-8
4.2.4 Control F l o w 4-11
4 . 2 . 5 Conclusions 4-12

4.3 Design Method Evaluation 4-12
Section 5 . Summary 5-1
Refer e nc e s

Standard Bibliography of SEL Literature

iv

0273

LIST OF ILLUSTRATIONS

Figure

1-1

1-2

2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12

4-1

4-2
4-3

Software Engineering Laboratory Organiza-
t i o n

Quality Measurement Across the Software
Life Cycle

Distribution of Development Cost
Distribution of Fault Rate
Nature of Software Errors.
Relationships Among Design Characteristics .
Cluster Analysis Tree Diagram.
Development Cost for Classes of Module Size. .
Module Size and Fault Rate
Fault Rate for Classes of Module Strength. . .
Module Strength and Faults by Programmer . .
Fault Rate by Descendent Count
Relationship to Error Rate
Relationship to Productivity
Fault Rate by Coupling Type.
Reducing Variable Repetition To Minimize
Complexity

Ada Design: Seniority Hierarchy of
Packages

FORTRAN System Diagram
Ada System Diagram

LIST OF TABLES

Table

2-1
2-2
2-3
3-1

3-2
3-3
3-4

355
3-6
3-7
3-8
3-9
3-10
3-11

Design Analyzer Output
Project-Level Design Parameters.
Data Summary for Detailed Design Data. . . .
Characterization of Classes for Application
Types.

Quality by Subsystem Function.
Quality by Module Function
Structural Characteristics of Quality
Classes.

Characteristics of Reused Software
Software Reuse and Development Cost.
Software Reuse and Fault Rate.
Module Size Distribution
Two Fault Rate Statistics.
Software Science and Cyclomatic Complexity . .
Module Strength Distribution

1-2

1-4
2-6
2-6
3-2
3-3
3-7
3-14
3-15
3-18
3-21
3-23
3-25
3-25
3-26

3-27

4-3
4-5
4-6

2-2
2-4
2-5

3-6
3-9
3-9

3-9
3-11
3-11
3-12
3-13
3-14
3-16
3-18

V

0273

LIST OF TABLES (Cont'd)

Table

3-12 Contingency Table Results. 3-19
3-13 System Structure and Quality 3-30
4-1 Allocation of Functions Among Subsystems . . . 4-7
4-2 Basic Quantitative Design Characteristics. . . 4-9

Vi

0273

SECTION 1 - INTRODUCTION

This document describes an extensive series of studies of
software design measures. It presents the study objectives
and explains how the studies were conducted, what results
were achieved, and where problems were encountered. The
document should be useful to researchers planning similar
studies as well as to managers and designers concerned with
applying quantitative design measures.

These studies were conducted by the Software Engineering
Laboratory (SEL) (Reference 1) as part of a continuing pro-
gram of software measurement (Reference 2) and technology
evaluation (Reference 3). The overall goal of the measure-
ment part of this program is to provide effective measures
for every phase of the software life cycle. Code measures
have already been extensively analyzed (Reference 4) , and a
study of specification measures is currently underway
(Reference 5) .
This document is organized into five major sections. Sec-
tion 1 describes the background and objectives of the design
studies. Section 2 outlines the measurement approach and
problems encountered. Section 3 presents the measurement
results. Section 4 discusses some studies of new design
methods for which design measures are being developed. Sec-
tion 5 summarizes the SEL design measurement experience.

1.1 THE SOFTWARE ENGINEERING LABORATORY

The SEL (Reference 1) is a research project sponsored by the
National Aeronautics and Space Administration/Goddard Space
Flight Center (NASA/GSFC) and supported by Computer Sciences
Corporation (CSC) /System Sciences Division and the Univer-
sity of Maryland/Computer Sciences Department (Figure 1-1).
The objectives of the SEL are to measure the process of soft-
ware development in the GSFC flight dynamics environment,

1- 1

0273

r

identify technology improvements, and transfer this technol-
ogy to flight dynamics software practitioners.

GODDARD 1 -
SPACE FLIGHT

OFMYLAND

SPACE FLIGHT

OFMYLAND
COMPUTER
SCIENCES

m h
(u
0

Figure 1-1. Software Engineering Laboratory Organization

The SEL monitors software developed for spacecraft flight
dynamics applications at GSFC. During the past 10 years,
the SEL has collected data from more that 50 software devel-
opment projects. Most flight dynamics projects are devel-
oped on a group of IBM mainframe computers using FORTRAN and
assembler programming languages. Specific software applica-
tions include attitude determination, attitude control,
maneuver planning, orbit adjustment, and general mission
analysis. The attitude systems, in particular, form a large
and homogeneous group of software that has been studied ex-
tensively.

1-2

0273

Data are collected both manually and automatically during
and after development (Reference 6). For example, errors
detected and hours charged are reported on forms by the de-
velopment team. Computer-use data are collected automati-
cally as part of the accounting procedure. In addition, the
completed software is processed through a source analyzer to
obtain detailed size and structure measures. All of this
information is stored in a computer data base accessible to
SEL participants.

1.2 STUDY OBJECTIVES

The software product is first defined in the design phase of
the software life cycle. The basic objective of these
studies was to develop design measures that effectively pre-
dicted eventual software quality. The target quality meas-
ures were productivity, reliability, and maintainability.
Figure 1-2 shows the life-cycle phases in which these quali-
ties are measured in the flight dynamics environment. Unit
cost (Figure 1-2) is related to productivity. Measures cor-
responding to these qualities are defined as follows:

Productivity (for project)

- Lines of code per staff hour

Cost (by unit or module)

- Staff hours per executable statement

Reliability

- Errors per line of code (for project)
- Faults per line of code (for unit/module)

Maintainability (for project)

- Modules or units affected per change
- Staff hours to implement change

1-3

0273

e PRODUCTIVITY
L

UNIT COST A

RELlABlLlW

IMPLEMENTATON

MAINTAINABILITY

W
9
c .
s
4
0 f- N 0

Figure 1-2. Quality Measurement Across the Software Life
Cycle

Because these studies were undertaken in the context of a
specific production environment, it was necessary to work
with the existing design practices and representation tech-
niques (Reference 7). These include the development of tree
charts and pseudocode. The common objective of the studies
can therefore be stated as follows: given the flight dy-
namics design representation, practices, and problem, develop
design measures for predicting software quality.

1-4

0273

SECTION 2 - MEASUREMENT APPROACH

The approach to data collection was basically to gather as
much and as varied design information as possible and then
to reduce it to its essential elements. This section de-
scribes this approach, discusses the problems encountered,
and summarizes the data collected for analysis.

2.1 DATA COLLECTION

To support the wide range of studies undertaken, it was nec-
essary to collect detailed structure, cost, and error data
at both the project and module levels. A project is a set
of functional subsystems implemented as one or more programs
that support a common mission. A module is the smallest
unit of independently compilable code. In FORTRAN, a module
corresponds to a subroutine.

Cost and error data were collected via the standard SEL

forms (Reference 6). Design data were extracted from origi-
nal design materials and from the implemented code. This
necessitated the establishment of a design materials library
and the development of procedures for analyzing software
source code (Reference 8) .
The design materials library includes formal documents, note-
books, and review materials. Source analysis is performed
by a specially modified version of the FORTRAN Static Source
Code Analyzer Program (Reference 9) .
The design data extracted from the code by the analyzer pro-
gram include calling trees and counts of statements, vari-
ables, decisions, etc. Table 2-1 lists the targeted
module-level design measures, most of which are provided by
the source analyzer program. Other design-related data pro-
vided by SEL data collection mechanisms (Reference 6) were
also studied.

2-1

0273

Table 2-1. Design Analyzer Output

ITEM

1
2
3
4
5

6

7

8
9
10
11
12
13
14
15
16
17
18

19

20

21
22
23
24
25
26
27

NAME

PROJ CODE
COMP NAME
COMP WOE
PAN LEVEL
MOO FUNCTION

SUBSYST FUNC

ORIGIN

NWECSTMT
NLINESCMTS
NCMTLINES
TOTCHANGES
TOTERRORS
DSNHRS
CODEHRS
TESTHOURS
CALLINGCOMPS
CALLEDCOMPS
CALLEDNSCOMPS

DEMHNSYS

AVGLEVEL

NARGSPARAMS
NARGSCALLS
TOTVARSKNOWN
NVARSEXECSTMT
NCOMMONVARS
NUNREFCOMVARS
CLUSTER

LOC

01-02
03-10
11-13
14-15
1617

16-19

20

-

21-24
2528
29-32
33-34
35-36
37-44
45-52
53-60
61-62
63-64
65-66

67-68

69-72

73-75
76-78
79-81
82-84
85-87
88-90
91-92

FORM

12
A8
A3
12
12

12

A1

-

14
14
14
12
12
Fa. 1
F8.1
Fa. 1
12
12
12

12

F4.1

13
13
13
13
13
13
12 -

DURCE~

CIF
CIF
CIF
CIF
CIF

CIF

CIF

CIF
CIF
CIF
CRF
CRF
CSR
CSR
CSR
DSF
DCF
DSF

DSF

DSF

DCF
DCF
DCF
DCF
DCF
DCF

DESCRIPTION

PROJECT CODE FROM ENCODE.HDR
NAME OF COMPONENT
COMPONENT CODE (NUMERIC HEX)
PANVALET LEVEL NUMBER
MODULE FUNCTION

SUBSYSTEM FUNCTION

ORlGiN OF COMPONENT

1.

1.

1: NEW
2: EXTENSIVELY MODIFIED
3: SLIGHTLY MODIFIED
4: OLD (UNCHANGED)

EXECUTABLE STATEMENTS (COUNT)
SOURCE LINES, INC. COMMENTS
NUMBER OF COMMENT LINES
CRFs FOR M I S COMPONENT
CRFs-ERROR-FOR THIS COMPONENT
TOTAL HOURS, DESIGN PHASE
TOTAL HOURS, CODE PHASE
TOTAL HOURS, TEST PHASE
COMPONENTS CALLING THIS ONE (FANIN)
COMPONENTS CALLED BY THIS (FANOUT)
NONSYSTEM COMPS CALLED (FANOUT

EXCLUDING SYSTEM ROUTINES)
DEPM OF NONSYSTEM CALLS 0

AVERAGE LEVEL OF THIS COMPONENT

ARGUMENTS IN PARAMETER LIST
ARGUMENTS USED IN CALL STATEMENTS
TOTAL VARIABLES KNOWN TO COMPONENT
VARIABLES USED IN EXECUTABLE STATEMENTS
TOTAL VARIABLES IN COMMON
UNREFERENCED VARIABLES IN COMMON
CLUSTER NUMBER (ANALYTIC)

TERMINAL NODE-TREE D E L L)

(ROOT NODE = 1)

NOTE: THE DDF IS A SEQUENTIAL FILE OF LENGTH 92; NO KEYS ARE DEFINED.

a CIF - COMPONENT INFORMATION FORM
CRF - CHANGEREPORTFORM
CSR - COMPONENTSUMMARY REPORT
DSF - DESIGN STRUCTURE flLE
DCF - DESIGN COMPONENT FILE

2-2

Because a complete set of design materials could not be re-
covered for a11 of the projects studied, most of the analysis
reported in this document relies on design information ex-
tracted from the software source. Most design decision re-
sults are directly reflected in the code, although some
design information, especially process data, cannot be cap-
tured in this manner. These experiences suggest that design-
unique data can be captured only at design time.

Table 2-2 lists a characteristic set of project-level design
parameters for future data collection efforts (Reference 10).
The module-level measures proved to be too voluminous for
easy historical reference. Individual module records must
be summarized to project records.

2.2 DATA SUMMARY

As indicated previously, the approach to data collection was
to gather as much design information as possible and then
reduce it to a more manageable subset based on analysis re-
sults. The amount and nature of the data obtained varied
from project to project, with project summary information
obtained for 29 projects. Detailed design data were ex-
tracted from only the eight projects shown in Table 2-3;

only four projects were adequately covered by component sum-
mary reports, which report module function. Consequently,
the full range of projects could not be employed for all
studies.

Preliminary investigations of the data indicated that values
for some design and quality measures did not conform to the
normal distribution model upon which common regression and
analysis-of-variance techniques are based. In particular,
values of cost (Figure 2-1) and fault rate (Figure 2-2) were
skewed to the left (toward zero). Many module-level studies
therefore employed nonparametric and classification tech-
niques instead of least squares procedures. The analysis
technique used for each study is identified in Section 3 .

2-3

0273

Table 2-2. Project-Level Design Parameters

'ARAMETER
NAME

PROJECT
PHASE

ENTITY

DATA1 N

DATAOUT

DATALOC

UNITS

PROGS

LEVELS

NODES

CALUPP

CAUSYS

COMUTL

COMGLO

EXTFILE

PDSTMT

PDLDEC
PROLOG

REUSED

SCPX
LCPX

DESCRl PTlON

TWODIGIT PAOJECT CODE FROM THE ENCODING DICTIONARY
UFECYCLE PHASE IN WHICH THESE PARAMETERS WERE

MEASURED (DETAILED DESIGN, IMPLEMENTATION, ETC.)

NUMBER OF ENTITIES (PHYSICAL OBJECTS) AFFECTING OR
AFFECTED BY THE SOFMlARE SYSTEM

NUMBER OF DESCRETE DATA ITEMS (OR VARIABLES) OUTPUT
FROM THE SYSTEM (EACH ITEM MAY OCCUR REPEATEDLY)

NUMBER OF DISCRETE DATA ITEMS (OR VARIABLES) OUTPUT
FROM THE SYSTEM (EACH ITEM MAY OCCUR REPEATEDLY)

NUMBER OF DISCRETE DATA ITEMS (OR VARIABLES) LOCAL
OR INTERNAL TO THE SYSTEM (EACH ITEM MAY OCCUR
REPEATEDLY)

NUMBER OF DISCRETE COMPllABLE UNITS, MODULES, PRO
CEDURES, OR PF#X;ESSES PRESENT IN THE SYSTEM
(I.E., FUNCTIONAL UNITS)

NUMBER OF SEPARATELY EXECUTABLE PROGRAMS OR
TASKS PRESENT IN THE SYSTEM (INCLUDES ONE OR MORE
UNITS)

NUMBER OF DISTINCT LEVELS PRESENT IN THE DESIGN
INVOCATION HIERARCHY (I.E., HEIGHT OF DESIGN)

MAXIMUM NUMBER OF NODES PRESENT ON ANY LEVEL OF THE
DESIGN INVOCATION HIERARCHY (LE., WIDTH OF DESIGN)

TOTAL NUMBER OF CALLS TO APPLICATION MODULES (LE.,
CALLS TO UNITS DEVELOPED SPECIFICALLY FOR THIS
PROGRAM)

TOTAL NUMBER OF CALLS TO SYSTEM MODULES (LE., CALLS
TO PREEXISTING UNITS SUCH AS THE GRAPHIC EXECUTIVE
SUPPORT SYSTEM (GESS) AND SYSTEM UTILITIES)

TOTAL NUMBER OF COMPLEX (NOT TERMINAL NODE) UTILITIES

TOTAL NUMBER OF COMMONS AND OTHER GLOBAL AREAS

NUMBER OF EXTERNAL FILES ACCESSED BY THE SYSTEM

(I.E.. FAN-IN > 1 AND FAN-OUT > 0)

PRESENT IN THE SYSTEM

(LOGICAL FILES, NOT ACCESSING UNITS)

TOTAL NUMBER OF PROGRAM DESIGN LANGUAGE (PDL)
STATEMENTS (EXCLUDING PROLOG DESCRIPTION) FROM
ALL UNITS

TOTAL NUMBER OF PDL-DEFINED DECISIONS FROM ALL UNITS
TOTAL NUMBER OF LINES OF PROLOG (UNIT DESCRIPTION)

FROM ALL UNITS (EXCLUDING PDL)
TOTAL NUMBER OF REUSED PROCESSES, MODULES, AND

UNITS (WHETHER OR NOT SUBSEQUENTLY MODIFIED)

STRUCTURAL (INTERMODULE) DESIGN COMPLEXITY
LOCAL (INTRAMODULE) DESIGN COMPLEXITY

SEE SECTION 3.6 FOR A DISCUSSION OF THESE MEASURES.

2-4

Tab le 2 - 3 . Data Summary f o r D e t a i l e d Des ign Data

TOTAL
MODULES

DATA COLLECTED
PERCENT SIZE
REUSED~ (KDLOC~) DESIGN

DATA

A

B
C

D

E
F

G

H

X I

158 11 50
203 34 49

338 32 106

259 84 37

327 24 83
393 47 79

199 49 5:

245 43 56 I? As cu 0

2-5

0273

3
3 a

B
P

36-

3 =-
3 28-

B 20-

a p 24-

c

4

MODE = 0.0
MEDIAN = 0.02
MEAN = 0.05
MAXIMUM = 0.92

MODE = 0.10
MEDIAN = 0.23
MEAN = 0.37
MAXIMUM = 5.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
HOURS PER EXECUTABLE STATEMENT

B 201

5.6

F i g u r e 2-1. D i s t r i b u t i o n of Development Cost

MODE = 0.0
MEDIAN = 0.02
MEAN = 0.05
MAXIMUM = 0.92

t I

0 0.02 0.04 0.08 0.08 0.10 0.12 0.14 0.92
FAULTS PER EXECUTABLE STATEMENT

PQCAR4IOPb)

F i g u r e 2-2. D i s t r i b u t i o n of F a u l t Rate

2-6

0273

SECTION 3 - MEASUREMENT RESULTS

The design measure studies were conducted at both the project
and module levels, using a wide range of techniques. The
general areas of investigation were as follows:

0 Defining design quality characteristics

0 Identifying software types and patterns

0 Quantifying software reuse

0 Evaluating module design heuristics

- S i ze/ leng t h
- Strength/cohesion
- Control coupling
- Data coupling

0 Assessing system design characteristics

This section describes the relevant results in each of these
areas.

3.1 DESIGN QUALITY CHARACTERISTICS

One area of investigation focused on profiling the design
process itself in terms of productivity, reliability, and
maintainability as well as defining its effect on overall
project quality. One study of three projects showed that
design-related errors accounted for 74 to 82 percent of all
nonclerical (nontranscription) errors reported (Refer-
ence 11). This percentage includes errors resulting from
producing the design as well as those from misunderstanding
the design. Figure 3-1 shows the distribution of errors for
the median project from this sample. Only 6 percent were
strictly proqramminq errors (related to language or environ-
ment). Clearly, design quality is a principal factor in
software reliability.

3-1

0273

REQUIREMENTS
AND SPEClFlCATlONSY

\ 11%

LANGUAGE AND
ENVIRONMENT

6%

NOTE: EXCLUDES CLERICAL/TRANSCRIPTION ERRORS.

Figure 3-1. Nature of Software Errors

c
8
F)

Another study attempted to use design characteristics to
predict development, modification, and correction effort
(Reference 12). Design cost and the number of variables
(parameters) in the argument list (~ 3) (Reference 13) were
measured for new modules from six projects. The modules
were ranked into quartiles for all five measures. Figure 3-2
shows the percent of modules in the upper (high) quartile of
effort for each quartile of design cost (Figure 3-2a) and ‘12

(Figure 3-2b).

This information could be used to forecast the quality of
modules in a system.
metric and the amount of effort spent in design (cost) are
known. The modules in the upper quartile of design effort
should be identified by a project manager for planning pur-
poses, because 56 percent of these modules fell into the

At the end of the design phase, the ‘13

3-2

0273

98/E/VZV EL20

-

-

I I I 1 I I I
I

0 0 0 0 W

- z 5

-

-

I
I
I
I
I
I

1 I 1 I I I I
0 0 0 * 0 In 0 W

3-3

- 3
3

I

I
- i 2

upper quartile of total development effort. Only 25 percent
would be expected to fall into this class if assignments to
classes were random. That is, in this environment, the moa-
ules in the upper quartile of design effort were more than
twice (i.e., 0.56 i 0.25) as likely as by chance to be the
most expensive to develop overall.

Modules in the upper quartile of the '13 metric were almost
twice as likely as by chance to require the most effort to
develop, modify, and correct. It was also observed that it
is easiest to identify modules that will have high develop-
ment effort and most difficult to identify modules that will
require little fault-correction effort. In addition, the
metrics of design effort and rl* were seen to be reasonably 2
similar in forecasting ability, except that '15 seems superior
in identifying modules that will require little modification
and correction effort.

An assumption must be made in order to use metric data from
past projects to predict the quality of modules from a cur-
rent project. The assumption is that the relationship be-
tween a module's current metric quartile and its eventual
quality (i.e., development, modification, and correction
effort) is the same as the relationship between the final
metric quartiles of past projects' modules and their quality.
This assumption is reasonable when using data from recent
projects that are similar to the current project, and when
predicting from metrics whose final quartiles are reasonably
certain early in development. For example, the number of
calling sequence arguments (v *) in a module tends to remain

2
relatively constant once specified in the design phase; con-
sequently, the metric's value does not tend to change quar-
tiles. It should be noted that the examples and metric data
presented are from one particular environment; project data
from other environments may differ.

3 - 4

0273

3.2 SOFTWARE CLASSIFICATION

Another design approach looks for recurring patterns or types
of software. Functionally similar systems and modules are
expected to exhibit similar structure and quality character-
istics. This relationship can be investigated by explicitly
assigning types or seeking implicit types in the data.

3.2.1 PROJECT-LEVEL STUDIES

One set of studies (Reference 14) was based on a group of
29 projects that were explicitly classified based on a num-
ber of criteria. Table 3-1 shows the breakdown into four
functional classes: scientific, data processing, support,
and system software. Median values of 11 measures are re-
ported for each class, with no statistically significant
differences reported. However, the study also showed that
software employing GESS (Reference 15) reused more code,
contained larger modules, required more coding effort, and
consumed more computer time. These results help managers
plan future development projects more effectively.

A cluster analysis was performed using developed lines,
average module size, computer use, percent of reused code,
percent of design effort, and percent of test effort. This
analysis divided the 29 projects into 2 well-defined clus-
ters and a set of unique individual projects, as shown in
Figure 3-3. Six of the original 29 projects dropped out of
the cluster analysis because of missing data for at least 1
of the clustering variables.

Cluster 1 consists of attitude ground support system (AGSS)

projects using GESS. Cluster 2 consists of data base, data
preprocessor, data simulator, and flight software. The

3-5
0273

T a b l e 3-1. C h a r a c t e r i z a t i o n of C l a s s e s f o r A p p l i c a t i o n
Types

MEASURE

DEVELOPED LINES

PERCENT REUSED CODE
PERCENTDESIGNEFFORT
PERCENT CODE EFFORT
PERCENTTEST EFFORT

PRODUCTIVITY
STABILITY e
MAINTAINABILITY f

SAMPLE SIZE

AVERAGE MODULE SIZEb

COMPUTER USE:

APPLICATION TYPE a

DATA SUPPORT SYSTEM SCIENTIFIC PROCESSING

49.272 26.199 15,012 30.481
185 81 140 91
21.8 0.4 12.0 5.8
30.0 39.5 29.5 29.0
29.0 27.0 23.0 23.0
35.0 26.0 36.5 45.0
0.076 0.110 0.030 -
3.55 9.57 2.67 1.96
0.036 0.024 0.058 0.080
47.0 59.5 31 .O 31 .O
20 2 5 2

remain ing f i v e p r o j e c t s demonstrated themselves t o be unique
i n some way, a s f o l l o w s :

0 V - - S m a l l p r o j e c t w i t h l a r g e ave rage module s i z e

0 D--Very h igh p e r c e n t of reused code

0 W--High p e r c e n t of reused code and u n u s u a l d i s t r i -
b u t i o n of e f f o r t d u e t o research o r i e n t a t i o n

0 K--Very l a r g e A G S S p r o j e c t

0 L--Very small A G S S u t i l i t y

T h i s c l a s s i f i c a t i o n i s s i m i l a r t o t h a t de te rmined by t h e
GESS use/non-use c r i t e r i a (Reference 1 4) . C l u s t e r 1 i n c l u d e s
o n l y GESS p r o j e c t s ; however, some GESS p r o j e c t s a l s o occur
i n C l u s t e r 2 and among t h e u n i q u e p r o j e c t s .

3 . 2 . 2 MODULE-LEVEL STUDIES

Another s e t of s t u d i e s (Reference 1 6) was based on i n d i v i d -
u a l modules t aken from e i g h t AGSSs. Because of t h e common

3-6

0273

A B F I E J G H C

I I - + - I I I I I
- + - I I I I I I

I I 1 1 1 1 I
I I I I - + - I
I I I I I I
I I I - - + - I
- - + - - I I I

- + - I I
I I I
I I I
I I I
I I I

+ I
I I

* * * * * * * * *
M N

I I
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I

* *

-+ -

O P Q R S T U

I I I I I I I
I I I I I I I
I I I I I - + -
I I I I I I
I I I I - + -
I I I I I
I I I I I
I I I I I
I l l 1 I
I l l - + -
I I - + -
I + -
I I

* * * * * * *

-+ I I I
+ - I I

I -+

CLUSTER 2 I CLUSTER 1

V D W K

I I I I
I l l 1
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
- I l l
- I I

I

* * * *

UNIQUE
PROJECTS

L

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

*

Figure 3-3. C l u s t e r Analysis Tree Diagram

3-7

application, all projects incorporated the same four major
functions: executive, telemetry processing, data handling,
and attitude computation. Table 3-2 shows the percent of
fault-free modules and the median cost for each class. The
attitude computation class stands out as a unique group of
software, exhibiting the highest percentage of fault-free
modules but also the highest cost (in hours per executable
statement). On the other hand, the "other" class shares
that fault-free rate while demonstrating the second lowest
cost. These data thus suggest that no direct relationship
exists between cost and error rate.

The functions of individual modules (within subsystems)
could be determined for some modules in four projects. The
functional classes defined were input/output, algorithmic,
and control. Table 3-3 shows that the three classes did not
differ noticeably with respect to the fault-free rate. How-
ever, marked differences appear with respect to cost. Con-.
trol modules required the most effort to develop: algorithmic
modules required the least. These results are consistent
with the intuition that logical decisions are harder to de-
velop than assignment statements.

Another approach (Reference 16) taken to these data involved
defining quality classes and then attempting to identify
structural characteristics associated with the quality
classes. Partitioning the modules on the basis of effort
per executable statement (productivity) and faults per exe-
cutable statement (reliability) produced two sets of three
quality classes. Table 3-4 shows the median values for
measures for each of these classes. Input/output (I/O) vari-
ables per executable statement and percent of assignment
statements demonstrated the greatest variation corresponding
to productivity. It was shown in Section 3 . 1 that the sub-
set of 1/0 variables, n*, could be used to predict module

3-8

0273

T a b l e 3-2. Q u a l i t y by Subsystem Funct ion

FAULT- MEDIAN HOURS PER
NUMBER FREE ("/") EXECUTABLE STATEMENT TYPE

INPUTK)UTPUT 19 58 0.20

ALGORITHMIC 99 58 0.16

CONTROL 96 57 0.24 a

TYPE

C s
R
cn
cu
0

EXECUTIVE

TELEMETRY PROCESSING

DATA HANDLING

AlTlTUDE COMPUTATlON

a HIGHEST VALUE IN COLUMN.

QUALITY CLASS

NUMBER

I/O
VARIABLES~

63

424

338

472

200

RELIABILITY

FAULT-

MEDIUM
HIGH

LOW

FREE ("10) -
62

58
59

na
na

MEDIAN HOURS PER
EXECUTABLE STATEMENT

0.27

0.25

0.18

0.30a

0.22 R cu
0

Table 3-3. Q u a l i t y by Module Funct ion

Table 3-4 . S t r u c t u r a l C h a r a c t e r i s t i c s of Q u a l i t y Classes

I PRODUCTIVITY I LOW

I MEDIUM
 HIGH^

a PER EXECUTABLE STATEMENT.
ZERO FAULTS REPORTED.

0.58
0.42
0.32

0.59
0.33
0.39

0.32
0.31
0.27

0.32
0.30
0.29

~~

ASSIGNMENT
STATEMENTS~

0.33
0.45
0.50

0.37
0.46
0.43

STATEMENTS a

1-1

0.17

3-9

0273

cost. Only the percent of call statements appeared to
fluctuate substantially with reliability.

3.3 SOFTWARE REUSE

Although not always recognized as such, an important design
decision involves the reuse of existing software. Some good
ideas have been developed on how to write reusable software;
however, opportunities to reuse software must be recognized
during the design activity. The goals of this analysis
(Reference 17) were to identify the types of software that
are reused in the flight dynamics environment and. to quan-
tify the benefits of software reuse.

Table 3-5 lists some of the characteristics of software re-
use. Executable statements measure module size. Mean deci-
sions measure module complexity. This table indicates that
the modules that are reused without modification (old) tend
to be small and simple (exhibiting a relatively low decision
rate). A more detailed cross-classification (not shown)
revealed that 55 percent of all o l d modules are high-strength
algorithmic modules, the type likely to be found in mathe-
matical software libraries. Table 3-5 shows that extensively
modified modules tended to be the largest in terms of the
number of executable statements.

Tables 3-6 and 3-7 clearly demonstrate the quality benefits
of software reuse. Fully 98 percent of old modules proved
to be fault free, and 82 percent of them fell into the lowest
cost (per executable statement) category. Significant non-
parametric (y) correlations are associated with both of
these relationships. (Percentages do not add to exactly 100
due to rounding.) These results are consistent with previous
S E L studies of reused code (Reference 4) , which indicated
that reusing a line of code costs only 20 percent of the
cost of developing it new. Because these four classes of
software differ substantially with respect to structure and

3-10

0273

Table 3-5. Characteristics of Reused Software

NUMBER

MODULES

EXECUTABLE
SOFIWARE TYPE OF STATEMENTS

NEW 532 55

EXTENSIVELY MODIFIED 132 83

SLIGHTLY MODIFIED 163 51

OLD (UNCHANGED) 60 28

MEAN DECISIONS
PER EXECUTABLE

STATEMENT a

0.30

0.29

0.25

0.20

:
2
v)
m
b cu
0

Table 3-6. Software Reuse and Development Cost

DEVELOPMENT COST
(PERCENT)

S O W A R E TYPE
LOW MEDIUM HIGH

NEW 42 28 30

EXTENSIVELY MODIFIED 52 27 22

SLIGHTLY MODIFIED 63 21 17

OLD (UNCHANGED) 82 8 10

2
g
v)

0

3-11

0273

quality measures, the subsequent module-level analyses are
based on new modules only.

Table 3-7. Software Reuse and Fault Rate

FAULT RATE
(PERCENT) SOFTWARE TYPE

LOW I MEDIUM I HIGH

EXTENSIVELY MODIFIED

SLIGHTLY MODIFIED

OLD (UNCHANGED)
v)

R cu
0

NOTE: GAMMA C,) 4 . 4 3 ; PROBABILITY THAT Y = 0 IS LESS
THAN 0.001.

3.4 MODULE SIZE

Design modularization criteria based on limiting module size
in terms of executable statements or lines of code have been
proposed and used (Reference 18). For this analysis,
453 modules were classified into 3 approximately equal
ordered groups on the basis of the number of executable
statements in each module. Table 3-8 shows the results of
this classification. The largest module in the sample con-
tained 267 executable statements.

The dividing line of 31 executable statements (Table 3-8) is
significant because, in the environment studied, it corre-
sponds to about 60 source lines of code. Many programming
standards limit module size to one page (or 50 to 60 source
lines of code). The informal guideline used in this envi-
ronment is that no module should exceed 2 pages (about
64 executable statements). Military standards on module
size range from 50 to 200 executable statements (Refer-
ence 18). One purpose of the study was to test the validity
of such standards, in general, and, in particular, to
determine if the local guideline should be strengthened.

3-12

0273

Table 3-8. Module Size Distribution

MODULE
SIZE

MEAN
NUMBER OF EXECUTABLE DECISIONS PER

STATEMENTS EXECUTABLE
STATEMENT MODULES

SMALL 154 1 TO31 0.31 I MEDIUM I 148 1 32T064 1 0.31
LARGE 151 65 OR MORE 0.32

A cross-tabulation of module size with development cost
showed a correlation (y) of -0.31. The probability of
this correlation being due to random factors is less than
0.001. Although the magnitude of this correlation seems
small, Figure 3-4 provides a better illustration of its im-
portance. As the figure indicates, fully 4 6 percent of
large modules fell into the lowest cost class, whereas just
22 percent of small modules were rated as low cost.

No significant relationship was found between module size
and fault rate. Two recent studies (References 19 and 20)
concluded that smaller modules were more fault prone. These
studies, however, adopted parametric approaches to the sta-
tistical analysis. Sixty percent of the small modules in
the sample contained no faults (Table 3-9). Nevertheless,
this size class exhibited the highest average fault rate
because a small module with even a single fault will show a
very high fault rate (Figure 3-5). That may be the
phenomenon detected by Basili and Perricone (Reference 19)
and Shen et al. (Reference 20).

The effects of programmer performance and the possibility of
an interaction between module size and module strength were
subsequently considered in a more detailed analysis of these
data (Reference 17) (Section 3.5). That consideration did
not change the conclusion that larger modules cost less to

3-13

0273

HIGH COST 48%

LARGE MODULES
(265 EX STMT)

MEDIUM MODULES
(32 TO 64 EX STMT)

SMALL MODULES
(1 TO 31 EX STMT)

F i g u r e 3-4. Development Cost f o r Classes of Module S i z e

T a b l e 3-9. Two Fault R a t e S t a t i s t i c s

I I I FAULT RATE i
MEDIAN I SIZE I MODULES I MEAN I

MEDIUM 0.051 0.024

LARGE 0.038 0.021
0

3-14

0273

1.00

0.875

0.750

0.625

3 a
2

0.375

0.250

0.125

1

1

1

1
11

1

2 1
I 1

1 1

2 a
1 1 11

It 1 21 1 ' 2 111 8 1 1
6 1 1 2 1 1 1 2 I 1

13 1 11121 1 I 1 1 1
14 341lllll3 122 1 1

11 11
1 1 1

27 I 4 1 6 1 2 13323232 11121 11 1 t 1

2 D S * C G D J 9 O ~ A 4 1 1 1 4 2 231144 53 3111 21 122 31 Z 1 1 1 1 1
96143764511621 2231422 12 1 1 1 1 L O

~

20 60 100 140 180 220 260

IJOCAR4lOB'I EXECUTABLE STATEMENTS

F i g u r e 3-5 . Module S i z e and F a u l t R a t e

3-15

develop (per executable statement) than small ones. Module
size does not appear to affect fault rate. A similar result
has been reported for another class of software (Refer-
ence 21).

Other module size criteria have been proposed based on the
concepts of software science (Reference 13) and cyclomatic
complexity (Reference 22). A recent study evaluated the
ability of these measures to predict development hours and
errors (Reference 23). Ostensibly, size should be limited
to reduce cost and errors. Table 3-10 shows that neither
software science measures nor cyclomatic complexity performed
as well as the simpler measure, source lines of code. That
these measures are not strongly related to effort or errors
suggests that they are not relevant criteria for defining
appropriate module size.

Table 3-10. Software Science and Cyclomatic Complexity

MEASURE

SOFTWARE SCIENCE EFFOFiT

SOFTWARE SCIENCE BUGS

CYCLOMATIC COMPLEXITY

SOURCE LINES OF CODE 0.52 0.26

3.5 STRENGTH/COHESION

Myers (Reference 24) defines seven levels of module strength.
In descending order, these are functional, informational,
communicational, procedural, classical, logical, and coin-
cidental. A high- (functional) strength module performs a
single well-defined function. Myers contends that high-
strength modules are superior to low-strength modules.
Although it was not possible to test this theory exactly, a
reasonable approximation was made. Some recent attempts to

3-16

0273

develop objective measures of module strength (References 25
and 26) seem promising, but are not (in their present forms)
easily applied: consequently, they were not employed in this
study (Reference 17)

Programmers determined the strength of a module via a check-
list, rating each module they developed as performing one or
more of the following functions: input/output, logic/
control, and/or algorithmic processing. Distinguishing the
types of functions seemed to be a less ambiguous task than
identifying the number of functions, because the number of
functions depends on the level of decomposition recognized
by the respondent. Those modules described as having only
one type of function were classified as high strength: those
having two types, medium strength: and those having three
types, low strength. Table 3-11 summarizes the results of
this classification process.

A cross-tabulation of module strength with fault rate showed
a correlation (y) of -0 .35. The probability that this
correlation is due to random factors is less than 0.001.
Again, a figure (Figure 3-6) provides a better indication of
the magnitude of this correlation.
strength modules were fault free, whereas only 18 percent of
low-strength modules were fault free.

Fifty percent of high-

No significant relationship was discovered between module
strength and development cost. The effects of programmer
performance and the possibility of an interaction between
module size and module strength were subsequently considered
in a more detailed analysis (Reference 27) of these data
(Table 3-12).

3-17

0273

T a b l e 3-11 . Module S t r e n g t h D i s t r i b u t i o n

STRENGTH

MEAN
DECISIONS PER NUMBER OF MEAN

EXECUTABLE EXECUTABLE
STATEMEMS STATEMENT

FORTRAN
MODULES

LOW

MEDIUM

HIGH

HIGH 20%

HIGH
STRENGTH
MODULES

s 90 77 0.29

176 60 0.32

187 48 0.32

i=
v)
0
IC
N

HIGH 35%
FAULT RATE

MEDIUM
STRENGTH
MODULES

FAULT RATE

LOW
STRENGTH
MODULES

F i g u r e 3 - 6 . F a u l t Rate f o r C l a s s e s of Module S t r e n g t h

3 - 1 8

0273

Table 3-12.

CRITERIA

MODULE STRENGTH

MODULE SIZE

Contingency Table Results

EFFECT
CONTROLLED

NONE

SIZE

PROGRAMMER

NONE

STRENGTH

PROGRAMMER

CORRELATIONSa

FAULT RATE

-0.35b

-0.32b

-0.21

0.20

0.19

0.27

COST RATE

-0.19

-0.27b

0.10

-0.31

-0.38b

-0.41

GAMMA (y) STATISTIC.
PROBABILITY IS LESS THAN 0.001 THAT CORRELATION IS ACTUALLY ZERO.

Controlling for module size, the correlation between module
strength and cost increases from -0.19 to - 0 . 2 7 and becomes
significant. Controlling for module strength, the correla-
tion between module size and cost increases from -0.31 to
-0.38. These results imply that, overall, high-strength
modules (usually small) tend to be low cost but that large
modules also tend to be low cost (independent of module
strength).

Thus far, the potential effects of programmer performance
were ignored. Lines 3 and 6 of Table 3-12 show the correla-
tions between the modularization criteria and quality meas-
ures obtained while controlling for the effect of programmer
performance. (The interaction of module size and strength
is, however, no longer controlled.) The large changes from
the initial correlations demonstrate that programmer per-
formance interacts with both module size and strength. The
disappearance of the significance of the relationships be-
tween module strength and module cost and fault rate indi-
cates that these relationships exist because high-strength

3-19

0273

modules are associated with programmers who produce modules
that cost less and have low module fault rates.

The effect of programmer performance was also examined in a
subsequent analysis. Of the 26 programmers in the sample,
16 developed 9 or more modules. Together these programmers
accounted for 413 of the total 453 modules. The performance
of these programmers was reanalyzed using nonparametric cor-
relation to better define the relationship of programmer
performance to modularization criteria.

For each of these programmers, the percent' of zero-fault and
low-cost modules was computed. The correlation (by program-
mer) between module strength and percent of zero-fault mod-
ules was -0.53 (probability less than 0.05 that this
correlation is due to random factors). Figure 3-7 shows two
clusters of programmers. Those who produce low-fault-rate
modules (i.eOr good programmers) tend to produce high-
strength modules. Good programmers do not, however, appear
to have any preference for a particular module size. The
lower significance levels associated with the correlation
coefficients result from the reduction in sample size pro-
duced by studying 16 programmers instead of 453 modules.

Finding that programmer performance accounts for some of the
strength of these relationships does not affect their valid-
ity. This result does, however, highlight the difficulty of
separating the effects of programmer performance from those
of technology or methodology (Reference 28) . Furthermore,
it enables us to learn about software development as Soloway
(Reference 29) prescribes, by observing what good program-
mers do.

3-20

0273

(10

3 a a
Y

PERCENT HIGH STRENGTH

Figure 3-7. Module Strength and Faults by Programmer

3.6 CONTROL COUPLING

Two modules have a control coupling when one invokes the
other. One commonly accepted design rule is that no module
should call too many (i.e., more than seven) other modules.
Furthermore, a module that calls only one other module might
just as well include the other module's function within it-
self. One formulation of this concept is an adaptation of
the "7 - + 2 rule" (Reference 30), which states that each mod-
ule should call from five to nine other modules, except in
the case of terminal nodes. (Calls to system services are
excluded from these counts of calls.)

For this analysis (Reference 16), the modules were grouped
into three ordered classes with respect to the number of

3-21

0273

descendants: one, two to seven, and more than seven. (Ter-
minal nodes were not included in this analysis.) The re-
sults of cross-classification indicate that modules with
more descendants tend to cost more (per executable state-
ment) to develop (y = 0.25) and have a higher fault rate
(y = 0.33). The probability of these correlations being
due to chance is less than 0.01.

Figure 3-8 illustrates the magnitude of the difference among
classes for fault rate. Only 12 percent of modules with
more than seven descendants were fault free, whereas 42 per-
cent of modules with only one descendant were fault free.
Apparently, the simpler the invocation structure in a mod-
ule, the better. This measure of structural complexity has
proven to be clearly related to fault rate (faults per exe-
cutable statement), whereas more complex measures based on
counts of decisions and operators have not (Reference 23).
On the other hand, the total number of faults appears to
increase with size, decisions, operators, etc. Earlier SEL
studies dealing with descendant span (e.g., Reference 23)
were handicapped because they did not distinguish between
calls to system/library routines and calls to other applica-
tion modules. The design analysis tool (Reference 9) devel-
oped for this study remedies that deficiency.

These results led to the development of a general design
complexity model based on counts of fanout, 1/0 variables,
and total modules (Reference 31). The model includes two
components: local (intramodule) complexity and structural
(intermodule) complexity. It is defined by the following
equations:

C = S t L (3-1)

3-22

0273

where C = relative complexity
S = structural complexity
L = local complexity

'i
I f l + l

1 L = n

where L = local (intramodule) complexity
= 1/0 variables in module ''in 'i

fi = fanout of module "i"
n = number of modules in system

L f ' i
s = -

n

where S = structural (intermodule) complexity
fi = fanout of module "i"
n = of modules in system

ONE
CALL

lW0 TO SEVEN
CALLS

FA
ZERO

rULTS 1

(3-2)

(3-3)

MORE THAN
SEVEN CALLS

Figure 3-8. Fault Rate by Descendent Count

Reference 31 fully defines these measures and explains their
derivation. Figures 3-9 and 3-10 show the correlations of

3-23

0273

relative complexity with error rate and productivity, re-
spectively, for eight large projects. As indicated in Sec-
tion 3.1, the bulk of software errors are design related, so

it is reasonable to find a strong relationship between de-
sign complexity and error rate, as shown in Figure 3-9. On
the other hand, many external factors have been shown to
influence productivity (Reference 27), leading to the weak
relationship shown in Figure 3-10. An implication of this
model is that complexity is minimized when fanout is evenly
distributed across all modules (except terminal nodes, of
course) .
3.7 DATA COUPLING

Two modules have a data coupling when data flows from one to
the other or is shared in COMMON. The two issues studied by
the SEL were the effects of different coupling mechanisms
and the strength of coupling.

FORTRAN modules can be coupled directly in two ways: through
calling sequence parameters or through COMMON block vari-
ables. (A COMMON block is a global data area.) Some authors
have argued against COMMON coupling (Reference 32), even if
it results in long and unwieldy calling sequences. A design
measure was devised to evaluate that argument.

For this analysis (Reference 161, the modules were grouped
into three ordered classes with respect to the percentage of
referenced 1/0 variables in COMMON: zero, 115 percent, and
>15 percent. (All calling sequence arguments count as ref-
erenced 1/0 variables.) No relationship was observed between
fault rate and coupling. Figure 3-11 illustrates this; the
percentage of zero-fault modules is about the same for both
parameter and COMMON coupled modules. Earlier recommenda-
tions that COMMON coupling was best avoided may have been
based on experience before the general availability of
"INCLUDE" processors. In an environment where only a single

3-24

0273

0 s
9
B

4
B

0
u)
K

K
3
0
I
LL U

u)
;I

65 n
n
0 U
Y
0
v) W

4

W

z

n

>

8
2
W

W
n

IO

9

8

7

8

5

4

3

2

1

5.1

4.1

3.0

2.0

C

r - 0.83

p(r = 01 s 0.02

I I 1 I I I I I I I I I 1
25 30 35

DESIGN COMPLEXITY

F i g u r e 3-9. R e l a t i o n s h i p t o Er ror Rate

E
8 D C

e e

F
e

A
e

e" G e

I I I I I

25
I I I I I I I 1 I i

30 35
DESIGN COMPLEXITY

F i g u r e 3-10. R e l a t i o n s h i p t o P r o d u c t i v i t y

3-25

0273

version of a COMMON block definition needs to be maintained,
COMMON coupling is an acceptable, and sometimes preferable,
alternative to parameter coupling. Furthermore, another
study (Reference 33) failed to shown any significant differ-
ence between global and parameter coupling with respect to
modifiability.

PAR A M ETER
(NO COMMON)

MIXED
(UP TO 15% COMMON)

COMMON
(MORE THAN 15%)

Figure 3-11. Fault Rate by Coupling Type

The SEL complexity model (Reference 31) described in Sec-
tion 3.6 implies that the strength of data coupling, in
terms of the number of variables shared, should be mini-
mized. Rigorous application of the principle of information
hiding (Reference 34) should reduce variable repetition and,
hence, local complexity.

Figure 3-12 shows two design parts of equal structural com-
plexity (according to the SEL complexity model): the number
and distribution of fanouts are identical. Figure 3-12a
traces a variable through a design following strict top-down
decomposition rules. The variable appears in the higher
level modules (A, B, D) as well as the lower level modules
(C , E) that actually use it. Figure 3-12b shows an alterna-
tive design with a horizontal transfer of data that bypasses

3-26

0273

4

P R O C A (1

PROC 6 (X, 1 PROC D (X.)

PROC E(X , 1 g
2

A J 8

PROC C (X,)

/
(a) STRICT TOP-DOWN STRUCTURED DESIGN

(b) LOWER COMPLEXITY WITH LATERAL TRANSFER

Figure 3-12. Reducing Variable Repetition To Minimize
Complexity

3-27

0273

the higher level modules. The local complexity of the in-
termediate modules (B, D) in the strict top-down configura-
tion (Figure 3-12a) exceeds their counterpart in the
alternative design (Figure 3-12b) because their counts of
1/0 variables are larger. This complexity model emphasizes
the number of data couples rather than the nature of the
coupling mechanism.

Rotenstreich and Howden (Reference 35) argue that both hori-
zontal and vertical data flow are essential to good design.
The appropriate use of horizontal transfers prevents data
flows from violating levels of abstraction. COMMON blocks
provide the only mechanism for horizontal data transfers in
FORTRAN. Figure 3-12 shows that horizontal data flows can
reduce the magnitude of the local complexity measure in some
situations.

Of course, a less complex design might also be produced by
partitioning the work differently and restructuring this
design. For example, PROC C could be invoked directly by
PROC E (if the nature of the problem permitted). However,
this simpler structure would still be reflected in lower val-
ues of the local complexity measures defined by this model.

3.8 SYSTEM STRUCTURE

Another study (Reference 36) looked at how a system can be
organized into subsystems and how subsystems can communicate
with each other and the external environment. Six hypotheses
were studied, as follows:

0 Complex Utilities--Complex utilities (modules with
fanin greater than one and fanout greater than
zero) adversely affect productivity and error rate.

0 File Access--Confining 1/0 operations to one module
per file reduces the potential for error.

3-28

0273

0 Programs--Allocating distinct functions to separate
executable images improves productivity and reduces
the potential for error.

0 COMMON Usage--Limiting COMMON block usage to one
block per subsystem and file reduces the potential
for error.

0 Hierarchical Level--Design structures with deep
calling sequence trees are error prone.

0 Nonexecutable Components--Systems with a high per-
centage of nonexecutable components are error prone.

The analyses included data on eight flight dynamics projects
from which design data had been obtained via the analyzer
program (Reference 9) plus one other project for which only
incomplete data were available. Regardless of the initial
hypothesis statement, all design characteristics were eval-
uated with respect to their effects on both productivity and
reliability.

Table 3-13 shows the correlations of the structure measures
(derived from the hypotheses) with the quality measures.
None of the design characteristics studied demonstrated a
statistically significant relationship to productivity or
error rate. This does not mean that these characteristics
are not important; rather, it implies that their effects are
not general. For example, the use of a complex utility may
be appropriate in one design context and inappropriate in
another.

It was not possible, however, to fully study all the design
hypotheses of interest with data extracted from the "design
as implemented in code." Much important design information
is not expressed in the code.

3-29

0273

Table 3-13. System S t r u c t u r e and Q u a l i t y

SAMPLE
SIZE

I - I CORRELATIONS I
PRODUCTIVITY

STRUCTURE MEASURE

a
9

9

8

8

9

AVERAGE 1 VALUE

-0.61

0.19

-0.01

0.64

-0.12

0.07

PERCENT COMPLEX UTILITIES

FILES PER SUBSYSTEM

SUBSYSTEMS PER PROGRAM

PERCENT COMMONS CROSSING SUBSYSTEMS
MEAN MODULE LEVEL

PERCENT NONEXECUTABLE COMPONENTS

10

1.5

5.1

48
6

18

ERRORRATE I

z;i
i=
v)
m
h
N
0

3-30

0273

SECTION 4 - DESIGN METHOD STUDIES

In addition to the measurement activities associated with
the existing flight dynamics design process, the SEL has
undertaken a number of studies of alternative design methods.
These studies have produced some additional measurement data,
as described in this section.

4.1 OBJECT-ORIENTED DESIGN

A software object is an abstract model of a problem domain
entity. Objects are packages of both data and operations on
that data (References 37 and 3 8) . The Ada package con-
struct is representative of this general notion of an object.
Object-oriented design is the technique of using objects as
the basic unit of modularity in system design.

The suitability and adaptability of Ada for flight dynamics
software development is currently being evaluated. The SEL
is involved in a pilot project to develop a satellite dy-
namics simulator in Ada using object-oriented methods
(Reference 39). NASA/GSFC and CSC are cosponsors of the
experiment, which is supported by personnel from all three
SEL participating organizations.

1

The objective of the overall experiment is to determine the
effectiveness of Ada for flight dynamics software develop-
ment at NASA/GSFC. The experiment, begun in January 1985,
consists of the parallel development, in FORTRAN and Ada, of
the attitude dynamics simulator for the Gamma Ray Observa-
tory (GRO) spacecraft. When completed, the system is ex-
pected to comprise approximately 40,000 source lines of code
to execute on a DEC VAX-11/780 computer. Additional infor-
mation about the experiment is presented in Reference 40.

~

lAda is a registered trademark of the U . S . Government
(Ada Joint Program Off ice) .

4-1
0273

This project has resulted in the development of a new design
notation and formal procedures for integrating object-
oriented design into the software development life cycle
(Reference 41).

The principal design abstractions incorporated in this pro-
cedure are the state machine abstraction (Reference 42) and
the representation of the system according to the orthogonal
views of a seniority hierarchy and a parent-child hierarchy
(Reference 43). The design is expressed as a set of object
diagrams. The state machines are conveniently implemented
as Ada packages cotlsisting of internal state data and a
group of related procedures that operate on that state data.

An instance of an object diagram is shown in Figure 4-1.
The figure indicates that the OBC package is senior to the
Truth Model package. The arc between the t w o packages shows
that OBC uses operations (subprograms) of the Truth Model.
Arcs do not go from a package to one that is above it. In
this way, each diagram expresses the relative seniority of
the packages. The orthogonal parent-child (or inclusion)
hierarchy provides for a package (like one of those in Fig-
ure 4-1) to be represented on a separate diagram in terms of
its constituent elements; for example, subprograms, other
packages, and state data.

As shown in the example, these object diagrams integrate
concepts from several other methodologies (References 3 8 ,
43, 44, and 45). Their use provides the following:

0 A design notation that maps into Ada, thus provid-
ing a composite mapping from a specification to Ada
software

0 A design notation flexible enough to represent both
traditional structured designs and nonhierarchical
designs

4-2

0273

- - - - - -

Figure 4-1. Ada Design: Seniority Hierarchy of Packages

0 Criteria for partitioning a software system into
modules and for choosing direction of control

0 Support for walk-throughs and iterative refinement
of a design through the use of graphical notation
for both the specification and the design

These concepts form an integral part of an object-oriented
software development life cycle.
to determine how object-oriented concepts can be used in
other phases of the life cycle, such as specification and
testing. When complete, this synthesis should produce a
general object-oriented development methodology.

Studies are now under way

4 . 2 FORTRAN/ADA-ORIENTED DESIGN COMPARISON

Some early experiences using Ada for scientific applications
(e.g., Reference 4 6) showed that the design of the Ada sys-
tem "looked like a FORTRAN design." As part of an experiment

4-3

0273

on the effectiveness of Ada (Reference 40), the experiment
planners identified the following factors that were believed
to be prerequisites for obtaining a new design, one that
would take full advantage of Ada features:

0 The opportunity to set aside previous designs for
the system and work directly from system require-
ments

0 Training in design methods that exploit Ada's capa-
bilities

0 Encouragement to explore these new design methods

The purpose of this analysis was to address the following
question:

When these prerequisites were satisfied, was a different
design produced?

In this analysis, a FORTRAN design was compared.with an
Ada-oriented design for the same system. In this high-level
look at each design, the overall system structure, the ex-
ternal and internal data flows, and the control flow are
discussed. Some simple quantitative measures are extracted
from each design,

4.2.1 SYSTEM STRUCTURE

A top-level system diagram for each design is shown in Fig-
ures 4-2 and 4-3. To facilitate comparison, the identical
system input and output objects are placed at the top and
bottom, respectively, of each figure. The FORTRAN system
consists of the five subsystems in the middle of Figure 4-2.
The Ada system is the product of a design method (Sec-
tion 4.1) that differs from the FORTRAN team method. So,

although "subsystem" will be used to refer to the major Ada
units, they are, in fact, Ada packages. Furthermore, the
Simulation Support Subsystem in Figure 4-3 is really a col-
lection of three Ada packages for the simulation timer,

4-4

0273

INPUT:

F i g u r e 4 - 2 . FORTRAN Sys tem Diagram

OvTptTc:

4 - 5

0273

INPUT:

OUTPVI:

Figure 4-3. Ada System Diagram

4-6

parameters, and ground commands. The Ada system appears in
Figure 4-3 as five subsystems on ly to invite comparison with
FORTRAN regarding the high-level data flow.

A M
SYSTEM

USER INTERFACE

SIMULATION SUPPORT

SlMULATlON CONTROL

The FORTRAN system is composed of three distinct programs:
Profile, Postprocessor, and Simulator (Truth Model, OBC
Model, and Simulation Control-1/01 . As separate programs,
each interacts with the user, as shown by the external data
flows in Figure 4-2 . The assignment of processing functions
to each subsystem is shown in Table 4-1 for both the FORTRAN
and Ada systems.

NUMBER
OF

SUBPROGRAMS

47

13

3

Table 4-1. Allocation of Functions Among Subsystems

NUMBER
OF

SUBROUTINES

13

86

58

46

59

262
TOTAL

SUBROUTINES

~

FORTRAN
SYSTEM

POSTPROCESSOR

s M u u n m
CONTROLAND VO

PROFILE

TRUM MODEL

cac MODEL

Rf"

-r ANALYZE RESULTS
INTERACTWITHUSER
UPDATE PARAMmRS
SCHUMGFtUJNDCOMMANDS
MAIYTANSMUUTU)TIME

I- CALCUATE ArmLlDE -
INDEPENDENT PRORLE
(ENVIRONMENTAL TORQUES.
EPHEMERIDES, ETC.)

INTEGRATE EOUATDNS OF MOTION { MODEL SENSOAS AND ACTUATORS

SIMULATE GRO Al-rITUDE DETERMINATION

MODELCONTROL LAWS OFONBOARD

MODEL BACKUP CONTROL PROCESSING

TRUTH MODEL 1 02

OBC MODEL

TOTAL
SUBPROGRAMS

t:
E
v)

0 ,rc
N 0

The Ada system is designed as a single program, with each
subsystem performing the functions listed in Table 4-1. The
OBC Model is functionally similar to its FORTRAN counterpart.
The Ada Truth Model incorporates the processing performed in
the FORTRAN Profile in addition to the FORTRAN Truth Model.
(The FORTRAN user has the option of choosing not to use Pro-
file and having those calculations performed in the Truth

4-7

0273

Model, t h e r e b y m i r r o r i n g t h e Ada des ign .) The Ada d e s i g n
p u l l s a p a r t t h e s i m u l a t i o n c o n t r o l f u n c t i o n s from t h e User
Interface; these p r o c e s s i n g elements are combined i n t h e
FORTRAN des ign . However, t h e User I n t e r f a c e i n Ada i n c l u d e s
t h e r e s u l t s p r o c e s s i n g t h a t , i n FORTRAN, is d e l e g a t e d t o a
s e p a r a t e program, t h e Pos tp rocesso r . B o t h d e s i g n s have major
u n i t s named T r u t h Model and OBC Model t o re f lec t t h e under-
l y i n g c o n t r o l problem.

4 . 2 . 2 EXTERNAL DATA FLOW

Both d e s i g n s i n F i g u r e s 4-2 and 4-3 show communication wi th
n i n e e x t e r n a l objects (f i l e s or d e v i c e s) . E i g h t of t h e n i n e
are i d e n t i c a l , t h e d i f f e r e n c e being t h e p r o f i l e d a t a f i l e i n
FORTRAN and t h e d i s p l a y format f i l e i n Ada. The FORTRAN

d e s i g n requires t h e p r o f i l e d a t a f i l e t o decouple t h e P r o f i l e
and T r u t h Model p rocess ing . The u s e of a d i s p l a y format
f i l e i n t h e Ada d e s i g n i s motivated by r e u s a b i l i t y c o n s i d e r -
a t i o n s . By keeping t h e de ta i led f o r m a t s of menus and d i s -

p l a y s on a n e x t e r n a l f i l e , t h e user i n t e r f a c e is e a s i e r t o
reuse on a f u t u r e s i m u l a t o r . The number of e x t e r n a l d a t a
f lows is g r e a t e r i n t h e FORTRAN d e s i g n , a s shown i n
T a b l e 4-2 . Most of t h e a d d i t i o n a l da ta f lows a r i se from t h e

s e p a r a t i o n of t h e FORTRAN d e s i g n i n t o three programs, re-
q u i r i n g more d a t a f lows t o and from t h e u s e r and d i s t i n c t
d a t a f lows t o t h e p r o f i l e data and r e s u l t s o u t p u t f i l e s t h a t

decouple t h e programs. A l s o , a s shown i n F i g u r e 4-2 , t h e

s t a r c a t a l o g e x t e r n a l f i l e i s r equ i r ed i n both P r o f i l e and
t h e T r u t h Model.

The Ada d e s i g n (F i g u r e 4-3) i nvo lves t h e minimum number of
e x t e r n a l d a t a f lows. The d e t a i l s of a c c e s s i n g each f i l e are
c o n f i n e d t o a s i n g l e subsystem.

4.2 .3 INTERNAL DATA FLOW

Tab le 4-2 shows t h a t t h e Ada des ign has n i n e i n t e r n a l d a t a
f lows , v e r s u s three f o r t h e FORTRAN d e s i g n . O f c o u r s e , no

4-8

0273

more internal data flows are possible in the FORTRAN case
because Profile and the Postprocessor are separate programs.
The three remaining subsystems in the FORTRAN design exchange
data with one another via COMMON blocks.
of COMMON has been criticized, results from the flight dy-
namics environment described in Section 3.7 have shown it to
be effective.)

(Although the use

CHARACTERISTIC

SEPARATE PROGRAMS

Table 4-2. Basic Quantitative Design Characteristics

FORTRAN
DESIGN

3

EXTERNAL DATA FLOWS

INTERNAL DATA FLOWS

SUBAOUTINEYSUBPROGRAMS

PACKAGES

TASKS

EXTERNAL ENTITIES

18

3

262

N/A

5 (IN SIMULATOR
PROGRAM)

1 9

ADA
DESIGN

1

5

9

10

9

252

104

The number of distinct data flows (connections) between sub-
systems is greater in Ada: however, fewer data items pass
over these connections than in FORTRAN. Figures 4-2 and 4-3
are annotated with the count of data items associated with
each data flow. An example will show how various Ada lan-
guage features help to reduce the proliferation of data item
names .
Both designs provide for the recording of simulation anal-
ysis results. In FORTRAN (Figure 4-2), these results pass
from the Truth Model and OBC Model via COMMON to the Simula-
tion Control-1/0 Subsystem, which writes them to the exter-
nal results output file. In Ada (Figure 4-3), the internal
data flows from the Truth Model, OBC Model, and Simulation

4-9

0273

C o n t r o l c a r r y r e s u l t s d a t a t o t h e User I n t e r f a c e , which
writes them t o t h e r e s u l t s ou tpu t f i l e .

I n t h e FORTRAN d e s i g n , t h e resul ts d a t a r eco rd compr ises
4 3 d i s t i n c t v a r i a b l e names. I n Ada, t h e r e s u l t s are passed
under a s i n g l e i d e n t i f i e r , R e s u l t s - Data, when a procedure ,
P u t - R e s u l t s - Data, i n t h e User I n t e r f a c e is cal led by t h e
T r u t h Model, OBC Model, o r S imula t ion C o n t r o l . T h i s reduc-
t i o n i n t h e number of i d e n t i f i e r s is p o s s i b l e because of t h e
u s e of Ada ' s v a r i a n t r eco rd f e a t u r e . I n t h e example,
R e s u l t s - Data c a n be e i t h e r a n executed ground command,
pa rame te r update , e r r o r message, o r a n a l y s i s r e s u l t . I n
Ada, t h e user c a n declare R e s u l t s Data as t y p e RESULT, de-

f i n e d a s a r eco rd t y p e wi th a v a r i a n t p a r t a s fo l lows :
-

t y p e RESULT - K I N D i s (E r r o r Msg, Log - Command, R e s u l t s ,

t y p e RESULT (Kind: RESULT - K I N D : = R e s u l t s) is

when E r r o r Msg 1 Log Command =>

when R e s u i t s 1 Parameters =>
PARAM - RESULT;

Par ameFer s :

r e c o r d
c a s e Kind is

R e s u l t s c i n e : STRTNG (1. . -80) ;
R e s u l t - R e c :

end case;
end r e c o r d ;

Because of such f e a t u r e s , t h e count of d a t a items is con-
s i s t e n t l y lower over t h e Ada d a t a flows t h a n over t h e
FORTRAN data f lows.

A f u r t h e r a n a l y s i s of t h e i n t e r n a l data f low compared t h e
ave rage number of data s o u r c e s used by modules i n each de-

s i g n , A d a t a s o u r c e could be a parameter l i s t , a COMMON

block i n FORTRAN, o r a c o l l e c t i o n of s t a t e d a t a i n Ada. T h e

OBC subsystems were examined because t h e y are t h e most
c l o s e l y matched by f u n c t i o n a l i t y (Tab le 4-1) , The r e s u l t s
showed t h a t a module i n FORTRAN uses an ave rage of 4.03 d a t a
sources compared t o 1 .95 d a t a sou rces f o r a t y p i c a l Ada sub-
program. The h ighe r FORTRAN value r e f l e c t s t h e 37 COMMON

4-10

0273

blocks used to store data.
Attitude Control and Determination Subsystem (ACADS) data
base of 222 OBC parameters. The typical Ada subprogram in
the OBC Subsystem uses data from this ACADS data base along
with a smaller source of state data.

4.2.4 CONTROL FLOW

A study of modules in the OBC Subsystems of each design com-
pared the distribution of fanout (number of modules called
by a given module). Ada modules showed a higher average
fanout, 1.68, versus 1.34 for FORTRAN. In a comparison of
average fanout squared, Ada modules were higher, 12.68, ver-
sus 6.24 for FORTRAN modules. Higher fanout in the Ada de-
sign reflects a basic pattern of obtaining data values by
subprogram invocation. The FORTRAN practice is to obtain
values from COMMON without a subroutine call. An example
shows this difference.

The example focuses on the function of modeling the magne-
tometer. The modules that perform this function were iden-
tified and examined in each design. In each case, the same
output quantities, magnetometer measurements, are produced.
The Ada design involves invoking five subprograms in addi-
tion to the calls on the Simulation Support Subsystem to
obtain magnetometer parameters. Four of the subprograms are
invoked to obtain current data needed for the magnetometer
modeling: spacecraft attitude, geomagnetic field, torquer
dipoles, and magnetic field of the coils. The fifth subpro-
gram call is to put the results data to the user interface.

Magnetometer modeling in the FORTRAN design requires no
calls to supporting subroutines for data. Six COMMON blocks
are referenced to obtain necessary data (attitude, magnetic
field, etc.) and to pass output magnetometer measurements.

The Ada design provides a single

4-11

0273

4.2.5 CONCLUSIONS

The comparison of FORTRAN and Ada designs revealed signifi-
cant differences in both the design processes and products.
In this experiment, the Ada design was shown to be different
to a significant degree from the FORTRAN design. This re-
sult differs from that reported in Reference 46 for another
monitored Ada development project in a different environment.

The results have implications for other organizations con-
templating the use of Ada. This experiment led to a design
that exploits Ada's features for expressing design abstrac-
tions. However, this result was facilitated by (1) the use
of a specification method, the Composite Specification Model
(Reference 5) , to counteract the influence of design-laden
requirements; (2) the explicit allowance for the Ada team to
pursue new design methods, not requiring the team to take
the less costly route of reusing the existing deign; and (3)
training in alternative design methods.

4.3 DESIGN METHOD EVALUATION

Several SEL-supported design studies have been conducted at
the University of Maryland using students as subjects. Two
recent experiments are of particular interest because they
are concerned with the differences among design methods.
The full results of these experiments are not yet available
(Reference 47).

In the first experiment, subjects used different design
methods to develop software in Ada for either a text for-
matter or an electronic mail system. The design methods
included Jackson System Development (JSD) (Reference 48) ,
object-oriented design (OOD) (Reference 38) , structured de-
sign (SD) (Reference 44), and several ad hoc design ap-
proaches. The objectives of the experiment were to learn
whether the prescriptive design methods (JSD, OOD, SD) were
correctly applied, identify structural differences among the

4-12

0273

designs, and analyze the resulting programs. As a follow-on,
the programs were given to graduate students who were di-
rected to make modifications to the programs. This follow-on
study investigated a possible relationship between design
method and ease of modifying the corresponding program.

The second experiment consisted of ten three-person teams:
five teams using OOD and five using SD.
was to explore differences in the resulting programs that
could be associated with the particular design method em-
ployed. The programs ranged in size from 2400 to 3000 source
lines of Ada.

Again the objective

The results of these experiments are still being analyzed,
but are inconclusive thus far.

4-13

0273

SECTION 5 - SUMMARY

The p reced ing s e c t i o n s described t h e r e s u l t s t o date of an
e x t e n s i v e program of d e s i g n measurement and methodology
e v a l u a t i o n conducted by t h e SEL. These i n v e s t i g a t i o n s have
o b t a i n e d s e v e r a l t a n g i b l e b e n e f i t s f o r f l i g h t dynamics (and
o t h e r) s o f t w a r e deve lope r s :

0 D e f i n i t i o n of a basic set of 1 9 d e s i g n measures f o r
da ta c o l l e c t i o n and h i s t o r i c a l r e f e r e n c e

- Design-unique d a t a must be c a p t u r e d a t d e s i g n
t i m e .

- Module-level d a t a m u s t be summarized t o t h e
p r o j e c t l e v e l fo r a r c h i v i n g .

0 E v a l u a t i o n of common des ign p r a c t i c e s and s t r u c t u r a l
charac te r i s t ics , showing

- GESS u s e l e a d s t o s i g n i f i c a n t s t r u c t u r a l d i f -

ferences among p r o j e c t s b u t n o t t o p r o d u c t i v i t y
o r r e l i a b i l i t y changes.

- Sof tware reuse l e a d s t o h i g h e r p r o d u c t i v i t y
and r e l i a b i l i t y of t h e f u l l system.

- Module s i z e is n o t an e f f e c t i v e c r i t e r i o n f o r
s o f t w a r e des ign .

- High-s t rength modules e x h i b i t lower c o s t s and
f a u l t ra tes .

- C o n t r o l c o u p l i n g , i n terms of t h e number of
i n v o c a t i o n s from a module , shou ld be minimized.

- Parameter o r COMMON c o u p l i n g shou ld be used a s
a p p r o p r i a t e . N e i t h e r i s g e n e r a l l y be t te r t h a n
t h e o t h e r .

5-1

0273

e Development of a design complexity model that sug-
gests the following:

- For a given total fanout, calls should be as
evenly distributed across modules as is con-
sistent with the design problem.

- Repetition of variables should be minimized
via information hiding and horizontal data
transfers.

0 Adaptation of object-oriented design methods for
flight dynamics use resulting in

- A procedure for defining objects from a data
flow diagram

- A graphical notation for expressing object-
oriented designs

-
0 Assessment of alternative design methods, showing

- Specific prerequisites must be satisfied to
produce substantially different designs for
the same problem.

- No single design method is generally better
than the others for all design problems.

These results will be incorporated into future versions of
flight dynamics standards (e.g., References 7 and 4 9) .

5-2

0273

REFERENCES

1. Software Engineering Laboratory, SEL-81-104, The Soft-
ware Engineering Laboratory, D. N. Card, F. E. McGarry,
G. T. Page, et al., February 1982

2. --, SEL-83-002, Measures and Metrics for Software Devel-
opment, D. N. Card, F. E. McGarry, G. T. Page, et al.,
March 1984

3. D. N. Card, "A Software Technology Evaluation Program,"
Annais do XVIII Congress0 Nacional de Informatica,
October 1985

4. V. R. Basili and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, April 1981

5. W. W. Agresti, "An Approach to Developing Specification
Measures, 'I Proceedings From the Ninth Annual Software
Engineering Workshop, NASA/GSFC, SEL-84-004, November
1984

6. Software Engineering Laboratory, SEL-81-101, Guide to
Data Collection, V. E. Church, D. N. Card, F. E. McGarry,
et al., August 1982

7. -- , SEL-81-205, Recommended Approach to Software Devel-
opment, F. E. McGarry, G. T. Page, S. Eslinger, et al.,
April 1983

8. Computer Sciences Corporation, Informational Memorandum,
"Design Data Processing Procedures," K. Hunter, April
1986

9. -- , CSC/TM-84/6154, Definition of Desiqn Measures for
the Software Engineering Laboratory, W. J. Decker,
December 1984

10. -- , PCA/IM-86/017(470), "Definition of Characteristic
Software Design Parameters," D. N. Card, W. W. Agresti,
V. E. Church, and W. J. Decker, April 1986

11. D. M. Weiss and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the
Software Engineering Laboratory," IEEE Transactions on
Software Engineering, February 1985

R- 1

0273

12. V. R. Basili and R. W. Selby, "Calculation and Use of an
Environment's Characteristic Software Metric Set," Pro-
ceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society
Press, August 1985

13. M. H. Halstead, Elements of Software Science. New York:
Elsevier, 1977

14. Computer Sciences Corporation, PCA/IM-85/058(455),
"Classification of Software Engineering Laboratory Proj-
ects," Q. L. Jordan, D. N. Card, and W. W. Agresti,
December 1985

15. -- , CSC/SD-75/6057, Graphic Executive Support System
User's Guide, J. E. Hoover, T. E. Board, and
A. M. Montgomery, August 1975

16. -- , Technical Memorandum, "Characteristics of FORTRAN
Modules," D. N. Card, Q. L. Jordan, and V. E. Church,
June 1984

17. D. N. Card, V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transac-
-~ tions on Software Engineering, February 1986

18. J. D. Bowen, "Module Size: A Standard or Heuristic?"
Journal of Systems and Software, 1984:4

19. V. R. Basili and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications
of the ACM, January 1984

20. V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen,
"Identifying Error-Prone Software-An Empirical Study, I'
IEEE Transactions on Software Enqineerinq, April 1985

21. P. C. Belford, R. C. Berg, and T. L. Hannan, "Central
Flow Control Software Development: A Case Study of the
Effectiveness of Software Engineering Techniques," Pro-
ceedings of the Fourth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society
Press, September 1979

22. T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Enqineerinq, December 1976

23. V. R. Basili, R. W. Selby, and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects,"
IEEE Transactions on Software Engineerinq, November 1983

R- 2

0273

24. G. J. Myers, Composite Structured Design. New York:
Van Nostrand Reinhold, 1978

25. R. D. Cruickshank and J. E. Gaffney, "Measuring the De-
velopment Process: Software Design Coupling and Strength
Matrices," Proceedinqs From the Fifth Annual Software
Engineering Workshop, NASA/GSFC, SEL-80-006, November
1980

26. T. J. Emerson, "A Discriminant Metric for Module Cohe-
sion," Proceedings of the Seventh International Confer-
ence on Software Engineering. New York: IEEE Computer
Society Press, 1984

27. D. N. Card, G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth In-
ternational Conference on Software Enqineerinq.
New York: IEEE Computer Society Press, August 1985

28. D. N. Card, F. E. McGarry, and G. T. Page, "Evaluating
Software Engineering Technologies," Proceedings From the
Eighth Annual Software Engineering Workshop, NASA/GSFC,
SEL-83-OU7, November 1983

29. E. Soloway and K. Ehrlich, "Empirical Studies of Pro-
gramming Knowledge," IEEE Transactions on Software Engi-
neering, September 1984

3 0 . G. A. Miller, "The Magical Number Seven, Plus or Minus
Two: Some Limits on our Capacity for Processing Infor-
mation," Psychology Review, 1956

31. Computer Sciences Corporation, PCA/IM-86/018(470),
"Measuring Software Design Complexity," D. N. Card and
W. W. Agresti, June 1986

32. B. W. Kernighan and P. S. Plauger, The Elements of Pro-
qramming Style. New York: McGraw Hill, 1974

33. J. B. Lohse and S. H. Zweben, "Experimental Evaluation
of Software Design Principles: An Investigation Into
the Effect of Module Coupling on System Modifiability,"
Journal of Systems and Software, 1984:4

34. D. L. Parnas, "On the Criteria To Be Used in Decomposing
Systems into Modules," Communications of the ACM,
December 1972

35. S. Rotenstreich and W. E. Howden, "Two-Dimensional Pro-
gram Design," IEEE Transactions on Software Engineering,
March 1986

R- 3

0273

36. Computer Sciences Corporation, PCA/IM-86/022(470),
"Evaluation of Six Design Hypotheses", D. N. Card, June
1986

37. A. Goldberg and D. Robson, Smalltalk 80: The Language

38. G. Booch, Software Engineerinq with Ada. New York:

and its Implementation. New York: Addison-Wesley, 1983

Benjamin/Cummings, 1983

39. W. w. Agresti, V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case
Study," Proceedings of the First International Confer-
ence on Ada Applications for the Space Station, June 1986

40. W. W. Agresti, "Measuring Ada as a Software Development
Technology in the Software Engineering Laboratory," Pro-
ceedings From the Tenth Annual Software Engineering
Workshop, NASA/GSFC, SEL-85-006, December 1985

41. Software Engineering Laboratory, SEL-86-002, General
Object-Oriented Software Development, E. Seidewitz and
M. Stark, July 1986

42. E. W. Dijkstra, "The Structure of 'THE' Multiprogramming
System," Communications of the ACM, December 1972

43. V. Rajlich, "Paradigms for Design and Implementation in
Ada," Communications of the ACM, July 1985

44. E. Yourdon and L. L. Constantine, Structured Desiqn:
Fundamentals of a Discipline of Computer Proqram and
Systems Design. New York: Prentice-Hall, 1979

45. G. W. Cherry and B. S. Crawford, The Pamela Methodology,
November 1985

46. V. R. Basili et al., "Characteristics of an Ada Software
Development," Computer, September 1985

47. E. E. Katz, H. D. Rombach, and V. R. Basili, "Structure
and Maintainability of Ada Programs: Can We Measure the
Differences?" Presented at Ninth Minnowbrook Workshop
on Software Performance Evaluation, August 1986

48. M. A. Jackson, System Development, Englewood Cliffs:
Prentice-Hall, 1982

R- 4

0273

49. software Engineering Laboratory, SEL-86-001, Program-
mer's Handbook for Flight Dynamics Software Development,
R. J. Wood and E. C. Edwards, March 1986

R- 5

0273

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshoe, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Lanquaqes
Study, P. A . Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinqs From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Enqineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, The Software Enqineerinq Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
qram Design Lanquage (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Desiqn Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

B - 1

0273

SEL-79-005, Proceedinqs From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-002, Multi-LeVel Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedinqs From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Enqineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedinqs From the Sixth Annual Software Enqi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. WyCkOff, July 1983

B-2

0273

SEL-81-104, The Software Enqineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Enqineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IVtV) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, Software Engineerinq Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
-' tion P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Enqineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Chanqes:
V. R. Basili and D. M. Weiss, December 1982

The Data From the Software Engineering Laboratory,

SEL-82-102, FORTRAN Static Source Code Analyzer PrOqram
(SAP) System Description (Revision 1) , W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enqineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 19 8 3

B-3

0273

SEL-82-406, Annotated Bibliography of Software Enqineerinq
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1986

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume 11, November 1983

SEL-83-006, Monitoring Software Development Throuqh Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Confiquration Manaqement and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investiqation of Specification Measures for the
Software Enqineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Enqi-
neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-
ni ues, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,
&1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers:
Volume 111, November 1985

SEL-85-004, Evaluations of Software Technoloqies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinqs From the Tenth Annual Software
Engineering Workshop, December 1985

B-4

0273

SEL-86-001, Programmer's Handbook for Fliqht Dynamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E, Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Enqineering Papers:
Volume IV, November 1986

SEL-86-005, Measurinq Software Design, D. N. Card, October
1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W O r V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada foi-
the NASA Space Station, June 1986

2Agresti, W, W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Proqram Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

IBailey, J. W., and V, R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.
New York: IEEE Computer Society Press, 1981

IBasili, V. R., "Models and Metrics for Software Manage-
ment and Engineering, '' ASME Advances in Computer Technology,
January 1980, vol, 1

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Enqineering. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R. , "Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacif ic Computer
Conference, September 1985

IBasili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

B - 5

0273

IBasili, V. R. , and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedings of the International Computer Software and Applica-
tions Conference, October 1985

I Journal of Systems and Software, February 1981, vol. 2, no. 1

-

4Basi1i, V. R., and D. Patnaik, A Study on Fault Prediction

of Maryland, Technical Report TR-1699, August 1986
, and Reliability Assessment in the SEL Environment, University

I

2Basi1i, V. R., and B. T. Perricone, "Software Errors and
Complexity:
the ACM, January 1984, vol. 27, no. 1

An Empirical Investigation," Communications of

IBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
itv Metrics. March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

I

I Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity,

I and Cost. New York: IEEE Computer Society Press, 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983-

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedinqs of the Eighth International Conference on Soft-
ware Engineerinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-
ness of Software Testinq Strategies, University of Maryland,
Technical Report TR-1501, May 1985

$Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "EX-
perimentation in Software Engineering," IEEE Transactions on
Software Engineerinq, July 1986

B-6

0273

2Basili, V.R., and D. M. Weiss, A Methodology for Collect-
ing Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodoloqy for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Engineer inq, November 1984

IBasili, V. R., and M. V. Zelkowitz, "The Software Engi- -
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedinqs of the Software Life
Cycle Management workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

-

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

kard, D. N., "A Software Technology Evaluation Program,"
Annais do XVIII Congresso Nacional de Informatica, October
1985

kard, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices,6 IEEE Transactions
on Software Engineering, February 1986

kard, D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineerinq. New York: IEEE
Computer Society Press, 1985

khen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

khurch, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types,*' ACM Software Engineering Notes, July 1986

B-7

0273

2Doerflinger, C. w., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedinqs of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedings of the Hawaiian Inter-
national Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedinqs of the Eighth International Computer Software
and Applications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eiqhth Inter-
national Conference on Software Engineerinq. New York:
IEEE Computer Society Press, 1985

*Seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of
the First International Symposium on Ada for the NASA Space
Station, June 1986

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C.,-G. Caron, and G. Brement, NASA/SEL Data Compen- - dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineerinq, February 1985

lzelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
November 198 2

B-8

0273

NOTES :

l T h i s a r t i c l e a l so appears i n SEL-82-004, Co l l ec t ed S o f t -
ware E n q i n e e r i n q P a p e r s : Volume I , J u l y 1982 .

I

B-9

* T h i s a r t i c l e a l so appears i n SEL-83-003, C o l l e c t e d S o f t -

3 T h i s a r t i c l e a l so appears i n SEL-85-003, C o l l e c t e d S o f t -

4Thi.s a r t i c l e a l so appears i n SEL-86-004, Col lected S o f t -

ware E n q i n e e r i n q P a p e r s : Volume 11, November 1983.

ware E n g i n e e r i n g P a p e r s : Volume 111, November 1985.

ware E n g i n e e r i n q P a p e r s : Volume I V , November 1986.

I

I

0273

